
19

particle two in the pair

$xposp2 = $r*cos($phi); # p2 shifted wrt q1
$xposp2 += 1e-10; # small distance for Lyapunov analysis
$yposp2 = $r*sin($phi);
push @array, [$xposp2, 0.0, $yposp2, 0.0, 0.0, $dp];
 }
} else {
fill in cooordinates
for($i = 1; $i < ($npart+1); $i++) {

if($npair > 1) {
 $r = $rmin + ($i - 1)*($rmax - $rmin)/($npart - 1);
} else {
 $r = $rmin;
}

$xini = $r*cos($phi);
$yini = $r*sin($phi);
push @array, [$xini, 0.0, $yini, 0.0, 0.0, $dp];
 }
} # end if lyap_flag

$numparts = $npart;

$shell->start(@array);
$shell->run(“print” => “>$file8”, “turns” => $numturns, “step” => $numsteps);
1;

18

$numturns = 16 ;
$numsteps = 1 ;

#==== prepare particles and track (rays) =======
require “$trkdir/setrays_sto.pl”;

#======= Write FTPOT input files ====================================
$shell->write(“file” => “$ftpot/dat/$file”,
 “field” => “$ftpot/errors/$file_errors”);

B) Example of script for RHIC tracking (setrays_sto.pl)
print “prepare particles and track = “, time, “\n”;

Parameters ---
beam parameters
$gamma = 268.0; # relativistic gamma
$dp = 0.0; # momentum deviation

tracking parameters for rays
$nray = 1; # rays number
if (not defined $nray_max) {
 $nray_max = 1; # max number of rays (15) 1=diagonal
 }
$npair = 10; # number of particle pairs
$lyap_flag = 0; # if Lyapunov flag not set, particles are equally distributed
$rmin = 0.0001;
if (not defined $rmax) { $rmax = 0.0015; }

ray preparation --

$npart = $npair*2;
$hpi = atan2(1,1)*2;
$phi = $nray*$hpi/($nray_max + 1);

my $i;
my @array = ();

if($lyap_flag == 1) {

fill in cooordinates
 for($i = 1; $i < ($npair+1); $i++) {

 if($npair > 1) {
 $r = $rmin + ($i - 1)*($rmax - $rmin)/($npair - 1);
} else {
 $r = $rmin;
}# particle one in the pair

$ipart = 2*($i-1);
$xini = $r*cos($phi);
$yini = $r*sin($phi);
push @array, [$xini, 0.0, $yini, 0.0, 0.0, $dp];

17

 “fields” => [“$dir/rhicSMF_DRG_DR8_deviations.pl”,
 “$dir/rhicSMF_QRG_deviations.pl”,
 “$dir/rhicSMF_DRX_deviations.pl”,
 “$dir/rhicSMF_D96_deviations.pl”,
 “$dir/rhicSMF_D5_deviations.pl”,
 “$dir/rhicSMF_QR4_deviations.pl”,
 “$dir/rhicSMF_QR7_deviations.pl”,
 “$dir/rhicSMF_SRE_deviations.pl”,
 “$dir/rhicSMF_QRI_deviations.pl”,
 “$dir/rhicSMF_QRJ_deviations.pl”,
 “$dir/rhicSMF_QRK_deviations.pl”,
 “$dir/rhicSMF_DRZ_deviations.pl”,
 “$dirr/irAtw.pl”,
 “$dirr/irBtw.pl”,
],);

#============= pick lattice ===
$shell->use(“blue”);

#========== define beam parameters ==
$shell->beam(“energy” => 250.); # injection: 25 collision: 250

#============ first turn ==
$shell->start([1.0e-5, 0.0, 1.0e-5, 0.0, 0.0, 0.0]);
$shell->firstturn(“print” => “./out/firstturn/$file”, observe => ““);

#============= survey ==
$shell->survey(“print” => “./out/survey/$file”, observe => ““);

#============= Print Twiss =============================
$shell->twiss(“print” => “./out/twiss/$file”);

#======== Make and print an one-turn 6D map ============================
$shell->map(“order” => 2, “print” => “./out/maps/$file”);

#======== Make and print an one-turn 6D matrix =================================
$shell->matrix(“order” => 1, “print” => “./out/matrices/$file”);

#======== corrections ===
$shell->analysis(“delta” => 0.0,”print” => “>./out/analysis/$file”);
$shell->hsteer(“adjusters” => “^kickh\$”, “detectors” => “^bpmh\$”);
$shell->vsteer(“adjusters” => “^kickv\$”, “detectors” => “^bpmv\$”);
$shell->analysis(“delta” => 0.0,”print” => “>>./out/analysis/$file”);
$shell->decouple(“a11” => “^sqsk6\$”, “a12” => “^sqsk8\$”,
 “a13” => “^sqsk12\$”, “a14” => “^sqsk2\$”,
 “bf” => “^qf\$”, “bd” => “^qd\$”,
 “mux” => 28.19, “muy” => 29.18);
$shell->analysis(“delta” => 0.0,”print” => “>>./out/analysis/$file”);
$shell->tunethin(“bf” =>“^qf\$”,“bd”=>“^qd\$”, “mux”=> 28.19,“muy”=> 29.18);
$shell->chromfit(“bf” =>“^sf\$”,“bd” =>“^sd\$”,“chromx”=>-3.0,“chromy”=>-3.0);
$shell->analysis(“delta” => 0.0,”print” => “>>./out/analysis/$file”);

#======= build header for file8 tracking output file ========
$file8 = “./out/8/$file”;

16

Appendix

A) Example of shell script for RHIC simulations (Shell.pl)
#============== begin SMF description ===============================

use lib (“$ENV{UAL_RHIC}/api”);

use RHIC::UI::Shell;

if ($ARGV[0] eq ““ or $ARGV[1] eq ““) {
 print “Usage: perl Shell.pl ‘mapType’ ‘nray_max’\n”;
 exit;
}

my $mapType = $ARGV[0];
$nray_max = $ARGV[1];

my $file = “my_file”;

my $dir = “$ENV{UAL}/rhic/data/update/storage”;
my $dirr = “$ENV{UAL}/rhic/data/update/irfilter”;
my $trkdir = “/track/mac/97/storage”;
my $maps = “/track/mac/97/maps/storage/$mapType”;
my $ftpot = “$trkdir/out/ftpot”;

local $smf = new Pac::Smf();

require “$dir/rhicSMF_level_1.pl”;
require “$dir/rhicSMF_level_2.pl”;
require “$dir/rhicSMF_level_3.pl”;

#============== Make the shell ====================================

local $shell = new RHIC::UI::Shell();

#============ Define DA Space =====================================
my $maxOrder = 7;
$shell->space($maxOrder);

===================== maps ====================================
$shell->read(“maps” => [
“$maps/rot05b3.map”,
“$maps/rot06b3.map”,
“$maps/rot07b3.map”,
“$maps/rot08b3.map”,
“$maps/snk03b7.map”,
“$maps/snk09b7.map”,],);

#============== Read input files ====================================

$shell->read(“line” => “blue”,

15

14

 Figure 1: O
verview

 of the U
A

L
 R

H
IC

 M
odel

survbase

dbsf

Lattice Sds
dbg2sds

Hooked Lattice Sds

magstat survstat

Field Model Sds Survey Sds

rhicSMF

hook_lat

hook view

HookSpace Sds

preexisting

 to be done

new

RHIC database

SMF
TEAPOT++

maps

analysis

tracking

survey

corrections

DA/ZLIB
(map generation)

(machine model)

MAD8
(MAD8 sequence)

parser

Fortran Teapot
input files

UAL
Perl Interface (Shell)

magbaseNameLookup
SurvSerial

Optics Database

13

References
[1] N.Malitsky and R.Talman, AIP 391, 1996
[2] L.Schachinger and R.Talman, Particle Accelerators, 22, 35(1987)
[3] Y.Yan, SSCL-300, 1990
[4] N. Malitsky, R. Talman,”A Proposed Flat Yet Hierarchical Accelerator Lattice Object Model”,BNL RHIC/AP/74
[5] D.C. Carey, F.C. Iselin, “Standard Input Language for Particle Beam and Accelerator Computer Programs”,
 Snowmass, Colorado, 1984
[6] V.Ptitsin, RHIC/AP/41
[7] A.Jain, Private Communication
[8] N.Malitsky, RHIC/AP/51

12

.

 Both at injection and storage the benchmark is the machine with errors and no helical dipoles. From the different
configurations studied one can observe that the degradation in dynamic aperture is at worst 2 σ at injection and 1 σ at
storage. Both values do not pose a challenge as far as machine performance is concerned, but, as already observed,
such results need to be verified when other effect are taken in consideration, such as synchrotron oscillation and
alignment errors.

7. Conclusions
 RHIC have been modeled using the Unified Accelerator Library software environment. As an application we have
studied the beam stability of RHIC in the presence of snakes and rotators. The impact of helical dipoles on beam
dynamics is measurable, but does not threaten significantly machine performance.
 The UAL environment is ready to be used and is being actively developed.

Table 6: Proton survival at injection energies, σ = 1.1115 mm at the IP.

Comments DA (x = y) in σ DA (x >> y) in σ DA (x << y) in σ

Machine & errors, without maps 11.507 11.507 12.170

Machine & errors, ideal helical maps 12.832 12.832 10.181

Ideal machine, helical + systematic 11.507 12.170 10.844

Ideal machine, helical + randoms 11.507 12.170 10.181

Ideal machine, helical + ∆bn 11.507 11.507 10.181

Ideal machine, helical + randoms + ∆bn 10.844 11.507 10.844

Machine & errors, helical + systematics 11.507 10.844 10.181

Machine & errors, helical + randoms 10.844 10.844 10.844

Machine & errors, helical + ∆bn 10.844 11.507 11.507

Machine & errors, helical + randoms + ∆bn 10.844 10.181 10.181

Table 7: Proton survival at storage energies, σ = 0.1365 mm at the IP

Comments DA (x = y) in σ DA (x >> y) in σ DA (x << y) in σ

With maps 9.37 10.47 8.58

Without maps (a1 = 0 in DRZ) 10.45 10.47 8.58

Without maps (IR corr a1 not 0 in DRZ) 9.91

11

investigations to short term tracking: symplectification methods are currently under investigation. In UAL each SMF
element can be represented as a map so the snakes and rotators have been included in the RHIC model quite naturally.
The UAL environment gives the possibility of representing all sorts of unconventional accelerator components. It is
also worth mentioning that snakes and rotators are fixed energy devices, thus different Taylor maps must be calcu-
lated at different energies to properly account for kinematic effects. The present model of the helical dipoles includes,
as explained, magnet field nonlinearities, but helical field setting errors, errors in the helical wavelength and survey
errors were not modeled.
 The study of beam stability consisted of an investigation of linear effects and subsequently an analysis of nonlinear
effects, primarily detuning and short term dynamic aperture both at injection and storage configurations for protons.
The results will be summarized in the following.
 The observation of the linear transfer matrices of snakes and rotators at injection evidenced significant focussing in
both horizontal and vertical planes, and, in the case of the snakes, linear coupling. Compensation of focusing and
coupling are within the capability of the RHIC correction system. The effect is not relevant at storage, where the lin-
ear transfer matrices of snakes and rotators are essentially drift space matrices. Beta functions and dispersion varia-
tions arising from the necessity to retune the lattice because of snakes and rotators were also analyzed. The results,
listed in Table 5 are acceptable for operations, and the variation can always be reduced, if deemed necessary, by
rematching the optics with snakes and rotators.

 For the detuning analysis, tune footprints are calculated for amplitudes varying from 1 to 7 σ at injection
 and from 1 to 5 σ at storage . As usually done in RHIC studies, the analysis is

done on momentum and for momentum deviations of .

 The tune footprint for RHIC with errors and no helical dipoles is shown in Figure 3. The ideal helical dipoles (that
is, without harmonics) do not contribute significantly to the detuning as seen in Figure 4. When we add errors to the
snakes and rotators (Figure 5) the tune shift with amplitude is increased but at a level that does not threaten machine
stability. The helical dipoles do not measurably affect the tunes at storage, as expected.
 For the dynamic aperture analysis, as already remarked, studies are limited to short term tracking (1000 turns), and
the results are very preliminary, since the RF cavities were off during tracking. Future studies will need to address
synchrotron oscillations, but the goal of the analysis was to compare results with and without helical dipoles rather
than obtain absolute dynamic aperture values. Disclaimers notwithstanding, aperture results are summarized in Table
6 for injection and Table 7 for storage.

Table 5: The maximum variations of beta functions and dispersion from the ideal RHIC lattice and with
combinations with ideal snakes and rotators.

Configuration [m]

Ideal lattice, from QF 0.95% 0.39% 0.17% 0.0

Ideal lattice, from QD 0.92% 0.32% 0.26% 0.0

with Snakes, from QF 7.67% 19.99% 6.50% 0.038

with Snakes, from QD 7.51% 21.46% 5.97% 0.083

with Snakes + Rotators, QF 12.46% 19.37% 7.88% 0.047

with Snakes + Rotators, QD 12.28% 21.40% 7.23% 0.104

∆βx()
max

βx

∆βy()
max

βy

∆ηx()
max

ηx
-------------------------- ηy()

max

σ 1.1115mm= σ 0.1365mm=

2.5σp±

10

Each system has been represented as a Taylor Map: the coefficients of the map have been calculated by the code
HELIX [8] which uses a Runge-Kutta Integrator and a Differential Algebra package. The input to HELIX was gener-
ated by the code MKHELIXMAP which reads the expected harmonics listed in Tables 1-4 and writes the field error
tables needed for each helical magnet. Through command line options to MKHELIXMAP random errors could have
been included in the field error tables. The resulting map is non-symplectic and this led us to necessarily limit our

Table 3: Expected Lead End Harmonics, 3.1cm reference.

1 0.0 2.0 2.0 0.0 2.0 2.0

2 -3.0 2.0 2.0 -9.0 2.0 2.0

3 0.0 1.0 1.0 0.0 1.0 1.0

4 1.0 1.0 1.0 -1.5 1.0 1.0

5 0.0 0.5 0.5 0.0 0.5 0.5

6 0.5 0.5 0.5 -1.0 0.5 0.5

7 0.0 0.5 0.5 0.0 0.5 0.5

8 0.5 0.5 0.2 -0.2 0.5 0.2

9 0.0 0.5 0.2 0.0 0.5 0.2

10 0.1 0.5 0.2 0.1 0.5 0.2

Table 4: Expected Return End Harmonics, 3.1cm reference.

1 0.0 2.0 2.0 0.0 2.0 2.0

2 -3.0 2.0 2.0 9.0 2.0 2.0

3 0.0 1.0 1.0 0.0 1.0 1.0

4 1.0 1.0 1.0 1.5 1.0 1.0

5 0.0 0.5 0.5 0.0 0.5 0.5

6 0.5 0.5 0.5 1.0 0.5 0.5

7 0.0 0.5 0.2 0.0 0.5 0.2

8 0.5 0.5 0.2 0.2 0.5 0.2

9 0.0 0.5 0.2 0.0 0.5 0.2

10 0.1 0.5 0.2 -0.1 0.5 0.2

n bn〈 〉 bn〈 〉∆ σ bn() an〈 〉 an〈 〉∆ σ an()

n bn〈 〉 bn〈 〉∆ σ bn() an〈 〉 an〈 〉∆ σ an()

9

.

Table 1: Expected Body Harmonics, 3.1cm reference, 4.0T excitation.

1 0.0 2.0 2.0 0.0 2.0 2.0

2 2.0 2.0 2.0 0.0 2.0 2.0

3 0.0 2.0 2.0 0.0 2.0 2.0

4 2.0 1.0 1.0 0.0 1.0 1.0

5 0.0 1.0 1.0 0.0 1.0 1.0

6 0.5 1.0 0.5 0.0 1.0 0.5

7 0.0 1.0 0.5 0.0 1.0 0.5

8 -10.0 1.0 0.5 0.0 1.0 0.5

9 0.0 3.0 0.5 0.0 3.0 0.5

10 2.5 1.0 0.5 0.0 1.0 0.5

Table 2: Expected Body Harmonics, 3.1cm reference, 2.0T excitation.

1 0.0 2.0 2.0 0.0 2.0 2.0

2 -3.0 2.0 2.0 0.0 2.0 2.0

3 0.0 2.0 2.0 0.0 2.0 2.0

4 4.0 1.0 1.0 0.0 1.0 1.0

5 0.0 1.0 1.0 0.0 1.0 1.0

6 0.0 1.0 0.5 0.0 1.0 0.5

7 0.0 1.0 0.5 0.0 1.0 0.5

8 -9.0 1.0 0.5 0.0 1.0 0.5

9 0.0 3.0 0.5 0.0 3.0 0.5

10 6.5 1.0 0.5 0.0 1.0 0.5

n b̃n〈 〉 b̃n〈 〉∆ σ b̃n() ãn〈 〉 ãn〈 〉∆ σ ãn()

n b̃n〈 〉 b̃n〈 〉∆ σ b̃n() ãn〈 〉 ãn〈 〉∆ σ ãn()

8

directory specified by “field”. The error file itself refers to a series of fort.nn files which contain the actual error set
data and which are written in the same directory.

6. Simulation of RHIC in the presence of helical dipoles
Two siberian snakes and 4 spin rotators per ring are planned to achieve polarized protons in RHIC. Each snake or
rotator consists of 4 helical dipole magnets: the latter are unconventional devices where the magnetic field rotates by
about 360o along the axis of the magnet. These devices cannot be modeled with conventional accelerator physics
codes. We used the UAL environment to successfully model the helical dipoles and study their impact on RHIC beam
dynamics. The model and results are explained in the following.
The field of a helical dipole can be represented by a Bessel function expansion as [6]:

The expected field harmonics (derived by field calculations and measurements of one prototype) for the RHIC helical
dipoles [7] are listed in the following tables: Table 1 and 2 show the harmonics for the body (coefficients of the above
Bessel function expansion), Table 3 and 4 show the harmonics for the edges (in this case they are coefficients of the
usual dipole Taylor expansion, since edges are modeled as thin elements at the entrance and exit of the helix module)
Each snake or rotator consists of 4 helical dipole magnets separated by drift spaces (see Figure 2)

Figure 2: Model of a RHIC Siberian Snake or Rotator systems

Br k m I'm mkr() ãm 1– m φ kz–()[] b̃m 1– m φ kz–()[]sin+cos
 
 
 

⋅ ⋅

m 1=

∞

∑–=

Bz k m Im mkr() b̃m 1– m φ kz–()[]cos ãm 1– m φ kz–()[]sin–
 
 
 

⋅ ⋅

m 1=

∞

∑=

Bφ
1
kr
-----Bz–=

Begin End

7

 In each case a method takes a set of parameters, like “print” or “observe” whose values are specified via the “=>”
symbol. Note that the directory specified by the “print” parameter must already exist. The “print” method will not
create a directory.

$shell->map(“order” => 2, “print” => “./out/maps/$file”);

$shell->matrix(“order” => 1, “print” => “./out/matrices/$file”);

 The methods map and matrix invoke DA mapping methods to create either a one turn 6 dimensional map or matrix.
Now we take up the correction methods in the way they are normally used.

$shell->analysis(“delta”=>0.0,”print”=> “>./out/analysis/$file”);
$shell->hsteer(“adjusters”=>“^kickh\$”, “detectors” => “^bpmh\$”);
$shell->vsteer(“adjusters”=>“^kickv\$”, “detectors” => “^bpmv\$”);
$shell->analysis(“delta”=>0.0, ”print”=>“>>./out/analysis/$file”);
$shell->decouple(“a11” => “^sqsk6\$”, “a12” => “^sqsk8\$”,
 “a13” => “^sqsk12\$”, “a14” => “^sqsk2\$”,
 “bf” => “^qf\$”, “bd” => “^qd\$”,
 “mux” => 28.19, “muy” => 29.18);
$shell->analysis(“delta”=>0.0, ”print”=>“>>./out/analysis/$file”);
$shell->chromfit(“bf” => “^sf\$”, “bd” => “^sd\$”,
 “chromx” =>-3.0, “chromy” => -3.0);
$shell->analysis(“delta”=>0.0,”print”=>“>>./out/analysis/$file”);

 The above methods invoke the sequence of corrections that are needed to define a properly corrected lattice for
tracking. These include analysis, hsteer, vsteer, decouple, and chromfit. These methods are usually invoked in the
above order as well. For those who have used Fortran TEAPOT before, the parameters required by each method are
probably familiar. In any case, refer to the teapot manual for detailed explanations of the methods. The specification
of the corrector elements in the steering and decouple methods by a regular expression is, of course, an inherent fea-
ture of Perl that UAL has adopted. Also, the decouple method used by UAL is different than the one used in the For-
tran version of teapot: four corrector families are specified rather than two.
 The decouple command performs a tunethin operation in preparation for setting the skew correction in the lattice, so
a separate call to the tunethin method itself was not needed above. However, the tunethin method is available directly
via the statement:

$shell->tunethin(“bf” => “^qf\$”, “bd” => “^qd\$”,
 “mux” => 28.19, “muy” => 29.18);

 We are now ready to do tracking. There are some parameters to set prior to invoking the teapot tracking algorithm.

$file8 = “./out/8/$file”;
$numturns = 1024 ;
$numsteps = 1 ;
require “$trkdir/setrays_sto.pl”;

 This tracking script, setrays_sto.pl, is RHIC specific. It sets an appropriate set of particle phase space initial condi-
tions and invokes the tracking method. This script is also included as an example in the Appendix.
 Now suppose we wish to compare the output from teapot++ with the fortran version of teapot. We can write out a lat-
tice and error set with the following Perl statements:

$shell->write(“file” => “$ftpot/dat/$file”,
 “field” => “$ftpot/errors/$file_errors”);

 The ftpot compatible lattice file is written to the file specified by “file” and the error sets are written to the file and

6

$shell->read(“maps” => [
 “$maps/rot05b3.map”,
 “$maps/rot06b3.map”,
 “$maps/rot07b3.map”,
 “$maps/rot08b3.map”,
 “$maps/snk03b7.map”,
 “$maps/snk09b7.map”,],);

 These statements read in the Taylor maps for the beamline elements specified by the file names. The read method
takes the parameter “maps” as a key to a Perl hash. This key then points off to the set of map files which are to be
inserted into the SMF. For example, there is a beamline in the lattice called “rot05b3” (a helix section). The read/
maps method will replace this beamline with the map named rot05b3.map. In general the name of the Taylor map file
is beamline.map for a given beamline.

$shell->read(“line” => “blue”,
 “fields” => [“$dir/rhicSMF_DRG_DR8_deviations.pl”,
 “$dir/rhicSMF_QRG_deviations.pl”,
 “$dir/rhicSMF_DRX_deviations.pl”,
 “$dir/rhicSMF_D96_deviations.pl”,
 “$dir/rhicSMF_D5_deviations.pl”,
 “$dir/rhicSMF_QR4_deviations.pl”,
 “$dir/rhicSMF_QR7_deviations.pl”,
 “$dir/rhicSMF_SRE_deviations.pl”,
 “$dir/rhicSMF_QRI_deviations.pl”,
 “$dir/rhicSMF_QRJ_deviations.pl”,
 “$dir/rhicSMF_QRK_deviations.pl”,
 “$dir/rhicSMF_DRZ_deviations.pl”,
 “$dirr/irAtw.pl”,
 “$dirr/irBtw.pl”,],);

 The next statements read in the set of field errors for each of the major magnet types measured in RHIC. The error
sets (and their structure) were discussed in Section 4, and this is the shell syntax needed to load the level 4 deviations
into the SMF. The order in which the error sets is read is not relevant. For convenience of presentation in this note we
have loaded all errors at the same time. In practice one will find that the lattice will not track properly the first time if
all of these error sets are imposed at once, so one breaks the addition of the error sets into groups followed by a set of
corrections. The correction methods will be discussed further below.
 At this point all four levels of the SMF are defined and can be used.

$shell->use(“blue”);
$shell->beam(“energy” => 250.);

$shell->start([1.0e-5, 0.0, 1.0e-5, 0.0, 0.0, 0.0]);

 However, before one can start to invoke the various methods, one has to set up a few parameters. For example, one
has to issue the “use” statement to the shell in order to identify which beamline in the lattice to analyze and track. One
then sets the beam energy and the initial six dimensional phase space coordinates for first turn tracking. The particle’s
phase space vector (the default particle is the proton) is defined as [x, px, y, py, delta, dE/E].

$shell->firstturn(“print”=>“./out/firstturn/$file”,observe=> ““);

$shell->survey(“print” => “./out/survey/$file”, observe => ““);

$shell->twiss(“print” => “./out/twiss/$file”);

5

use lib (“$ENV{UAL_RHIC}/api”);

use RHIC::UI::Shell;

 These statements set up the UAL environment. The environment variable UAL_RHIC (along with others) is set by
the script /usr/public/ENV/setup-ual. It must be sourced before this (or any other UAL Perl script) will work.

if ($ARGV[0] eq ““ or $ARGV[1] eq ““) {
 print “Usage: perl Shell.pl ‘mapType’ ‘nray_max’\n”;
 exit;}

 These statements process the two required command line arguments of the script. The two arguments in this exam-
ple are the subdirectory name where the Taylor map files are stored, and the number of rays (i.e. directions in phase
space) for tracking, respectively.

my $file = “my_file”;

my $dir = “$ENV{UAL}/rhic/data/update/storage”;
my $dirr = “$ENV{UAL}/rhic/data/update/irfilter”;
my $trkdir = “/track/mac/97/storage”;
my $maps = “/track/mac/97/maps/storage/$mapType”;
my $ftpot = “$trkdir/ftpot”;

 These lines set up some local (via the Perl “my”) Perl variables to define various file paths used in the methods that
follow.

local $smf = new Pac::Smf();

 This defines the Smf object.

require “$dir/rhicSMF_level_1.pl”;
require “$dir/rhicSMF_level_2.pl”;
require “$dir/rhicSMF_level_3.pl”;

 As discussed earlier in this note, the RHIC SMF levels 1, 2 and 3 are defined in a set of files which here are loaded
into memory via the Perl “require” statement. $dir points to the location of these files. To change from storage to the
injection lattice, one must modify $dir appropriately.

local $shell = new RHIC::UI::Shell();

 This statement defines the RHIC Shell which points to the various methods we will use to track, analyze, etc.

my $maxOrder = 7;
$shell->space($maxOrder);

 Currently the shell requires the initialization of the maximum order of the mapping space via the above two state-
ments. These statements are needed whether you use maps explicitly or not.

4

rhicSMF_QRK_deviations.pl
rhicSMF_SRE_deviations.pl

script.pl is the master script. It sets up the UAL shell environment and loads the other Perl scripts into memory upon
execution via Perl. The second set of three files defines the SMF levels 1, 2 and 3 as defined above. The third set of
files defines the magnetic field errors for each individual magnet in the blue ring. These error sets are organized by
magnet type following a RHIC naming convention, e.g., DRG is the generic designation for arc dipole magnets.
 The definition of the methods used for the error sets requires some explanation. A FieldMigrator module was created
especially for the RHIC shell to handle the incorporation of these error sets. It includes two components. The first
component is the definition of a regular expression or symbolic pattern based on the generic name of the lattice ele-
ment. This pattern is used to define an index into the lattice (i.e., at level four of the SMF) to locate all the elements of
a given type according to the specified field set pattern. The second component of the FieldMigrator is the definition
of the array (actually a pointer to array in the Perl sense) which contains the errors to be assigned to each element
according to the index defined by the pattern. One word of caution: at this point in the development of the RHIC shell,
one has to insure that the sequential ordering of the array is exact with respect to the order of the index. Otherwise
elements will be assigned error sets incorrectly. In future this restriction will be removed, i.e., other methods will be
developed to provide for the proper matching of an individual element and its error set.
 An example of this kind of code for the DRG magnets:

$field_set_pattern = “^d\$” ;

$field_set = [
[“DR8506”,[0, -1.009289243597379e05, -0.01896240397061743, 7.232627888663886,

-39.93115261941632, 17945.52976543179, 1879.11306444312,
 1302851.724680563, 66645876.68558266, 0, 0.0002611918224339885,
-0.001828954447488584, -0.08172184420885445, -1.032533480722652,
 19.57409442128251, -555.9042815644231, 8769.194300734562,
-551206.4989033153, 52114068.98722253],

[0, 1.124734270399047e-05, 0.004343142356164382, 0.004586389422275162,
-0.1616896609886837, 4.125159299583085, -173.2981494699225,
-2321.697696247766, -367491.578206075, 14328191.49684335, 0,
 6.403454723049433e05, 0.0001308546134603, 0.004754816152471708,
 0.03627652650387134, -0.9328249672424059, 31.50875444907683,
-364.8382094103632, 30513.74115068492, 2281897.16431209],

[0, -1.645399594997022e-05, 0.01587065644788565, -0.0009457808695652173,
-0.5482937863013698, -1.077931073257892, 1477.594748111971,
-895.5119685527098, -94194.59224776652, -2494166.667969028, 0,
-5.446337438951757e-05, 0.006012186472900535, 0.003161240166765932,
 2.441928469803454, 0.06218833114949365, -1396.335328743299,
-1525.687057534246, 680589.0961000593, 424539.0073138772],],

The regular expression “^d\$” will locate and define an index to all the arc dipole elements in the lattice. The
$field_set array defined afterward contains the magnet serial name, if known, followed by three sets of multipole
coefficients (b0-b9, a0-a9 in that order) for the body, front and end sections of the magnet. The coefficients are
defined in such a way so that by adding their values to the ideal strength parameters of the magnet defined in level two
of the SMF, the actual field specification for each magnet is recovered.
The above set of Perl scripts provides the complete specification of the RHIC model in the UAL environment. In
order to do some calculations one has to invoke the teapot tracking engine with its associated methods. Their descrip-
tion will be the subject of the next section.

5. The RHIC Shell Interface
The following Perl script (reproduced without intervening comments in the Appendix) is a sample script for reading

the RHIC SMF into program memory followed by the invocation of methods that are commonly used in tracking and
analysis. This script also includes the insertion of Taylor maps as a replacement of certain beamlines. In particular,
the snake and helix sections of the blue ring are replaced by maps in this example script. We will explain each of the
sections of the script in turn.

3

survstat. Although we have not incorporated the alignment data as yet, the output of survstat will similarly be struc-
tured to provide input to the SMF generation process. Each installed magnet in this SurveyModel structure will be
indexed by its survey name.
 The final stage in the generation of the RHIC SMF is the C++ program rhicSMF. This program reads both the
HookedLattice and FieldModel data to produce a set of Perl scripts. These Perl scripts are written according to the
RHIC Ascii SMF format and incorporate the lattice definition and assignment of multipole coefficients to each of the
installed magnets. Currently, the program generates an SMF description only for the RHIC Blue ring because the
algorithm which assigns the front and end multipoles as a function of magnet orientation of each component in the
ring is accurate only for the blue ring. In principle, an SMF model for both rings can be constructed by the rhicSMF
program.

4. The RHIC Ascii SMF Format
 Access to the UAL suite is provided via a Perl-based shell environment. Each UAL project (RHIC, CESR, LHC,
etc.) has developed a set of Perl modules which provide a user friendly means of calling the suite of UAL programs,
e.g., particle tracking via TEAPOT++ or differential algebra and mapping techniques. As mentioned earlier the rhic-
SMF program loads the state of RHIC data sources to a set of Perl scripts that provide access to the SMF data struc-
tures. One can consider these scripts as the Ascii SMF representation. The SMF for RHIC has four levels.
 The first level comprises the definition of various parameters such as magnet or vacuum pipe lengths and magnet
strengths. UAL supports the algebraic manipulation of these parameters to the same extent as the Perl language per-
mits. So a group of parameters can be used to calculate other parameters in as complicated an expression as the user
would like. This is one advantage of using the Perl language as an interface/parser compared to building one’s own
(e.g., as in MAD).
 The second level defines all the elements used in the RHIC lattice. This includes all the standard element types from
MAD with their associated attributes as well as generic types with additional complexities that may require, for
example, the use of a Taylor map expansion to properly model the element’s magnetic behavior.
 The third and fourth levels define the beam line hierarchy and the flat lattice, respectively. A beam line in the level
three description or beam line hierarchy, similar to that used by MAD, comprises a set of level two elements defined
as a sequential collection of element names. The total collection of beam lines has a tree structure wherein the top-
most beam line contains a sequential list of all the elements of the lattice upon unraveling its embedded components.
 The level four or lattice description is a special structure corresponding to the flat version of the topmost beam line
where all the individual magnetic field and misalignment errors can be associated.
 For example, the set of Perl scripts for the RHIC SMF description ultimately appears as the following set of files:

script.pl

rhicSMF_level_1.pl
rhicSMF_level_2.pl
rhicSMF_level_3.pl

rhicSMF_DRG_DR8_deviations.pl
rhicSMF_D5_deviations.pl
rhicSMF_D96_deviations.pl
rhicSMF_DRX_deviations.pl
rhicSMF_DRZ_deviations.pl
rhicSMF_QR4_deviations.pl
rhicSMF_QR7_deviations.pl
rhicSMF_QRG_deviations.pl
rhicSMF_QRI_deviations.pl
rhicSMF_QRJ_deviations.pl

2

ming interface (API) simpler and more “physical” than present, code-specific, grammars. Adoption of a standard pro-
gramming language with its well-defined, highly disciplined grammar and lexical elements brings many benefits:
support of major (conditional, iterative, etc.) statements and expressions, extensions in many different areas, interfac-
ing to popular freeware and commercial applications (GUI, databases, communication, etc.), stability and portability,
development and maintenance support by thousands of users and vendors, and natural connection to new tendencies
and technologies in computer science.
 For accelerator modeling the API is conventionally divided into two main parts, Accelerator Description and
Actions. Certainly, the Accelerator Description must not be determined by the particular interpreted language. It
should be based on the same object model as the one recognized by the core algorithms and, as such, it should be con-
sidered to be a “wrapper” around this common object-oriented accelerator description. From the software developer’s
perspective, the accelerator is characterized by two contradictory peculiarities. On the one hand, the accelerator is
built from ideal standard elements with well-defined design principles. On the other hand, the resulting model is to be
used as a tool for predicting and improving performance in the presence of non-ideal, perhaps not previously classi-
fied, devices. (This complementarity has contributed in the previously mentioned proliferation of special purpose
codes.) We support an appreciable range of such possibilities by dividing all accelerator elements into three conven-
tional categories, MAD, COSY (describable by Taylor series map), and WILD (a catch-all for special-purpose ele-
ments such as internal targets, electron cooling inserts, etc.)
 The second main API feature, Actions, have traditionally consisted of an even more heterogeneous collections of
commands and directives; again this is due to the variety of physical missions. The power of a modern computer lan-
guage (in our case Perl) then makes it possible to merge these diverse descriptions seamlessly into a model is which
beam dynamics in different sectors of the same lattice is described by different computation algorithms. A typical
application might describe most of the lattice by TEAPOT conventional algorithms and one or more sectors by trun-
cated Taylor series maps or WILD elements. As well as supporting this modularity, Perl automatically supplies the
conditions for studying “dynamic” accelerator performance in which some of the optical parameters are varied, either
adiabatically or impulsively. This permits the modeling, and eventually control, of effects like energy ramping, transi-
tion crossing, tune modulation, resonant extraction, and so on.
 At this time the UAL joins three object-oriented accelerator programs: Platform for Accelerator Codes (PAC), Thin
Element Program for Optics and Tracking (TEAPOT), and Numerical Library for Differential Algebra (DA). The
PAC is a collection of common data objects that can be shared, exchanged, or converted by other codes and processes.
The central place in this architecture is taken by an accelerator object model, the Standard Machine Format [4]
(SMF), that is an extension of the Standard Input Format (SIF)[5].

3. The RHIC Data Stores
 The RHIC model has been adapted to the UAL Standard Machine Format (SMF) via a set of C++ programs. Refer-
ring Figure 1, the following general features are apparent. At the top are located various data stores: the optics design,
NameLookup, magnetic field measurement and alignment databases. In the middle of the figure are described various
processes and intermediate data stores such as HookLat, the HookedLattice model, magstat, the FieldModel and at
the bottom of the figure the rhicSMF program and the entire set of UAL libraries and interfaces. We discuss each of
these general areas.
 The optics, NameLookup, magnetic field and alignment databases are all structured in terms of various tables. In this
form the data is actually not convenient for many of the RHIC applications (not necessarily involved with UAL) that
need the data stored therein. For example, the optics design is structured as a set of hierarchical beamlines in the data-
base, and we need to generate a flat sequential list description to provide the hooks for the field and alignment data to
individual magnetic components. A set of processes, dbsf and HookLat are available to do this. First, dbsf create a flat
lattice structure from the optics database, and then HookLat adds to this the Hook structure which associates informa-
tion from the magnetic field and alignment data. HookLat needs in addition to the optics structure the data from
NameLookup. NameLookup contains the cross-reference of names from the lattice to both the magnet serial and sur-
vey names which provide the keys to the field measurement and alignment databases. When HookLat has finished its
processing, a temporary hooked lattice structure (HookedLattice) with all installed component names is available for
construction of the RHIC SMF model.
 The magnetic field database is analyzed by a process called magstat. Individual and average multipole coefficients
are computed for each magnet and magnet type and the output is stored in a structure called the FieldModel. The
FieldModel is indexed by the magnet serial name. The alignment data is analyzed analogously by a program called

1

RHIC/AP/146

A model of RHIC using the Unified Accelerator
Libraries

F.Pilat, S.Tepikian, C.G.Trahern, BNL
N.Malitsky, Cornell

1. Introduction.

 The Unified Accelerator Library (UAL) [1] is an object oriented and modular software environment for
accelerator physics which comprises an accelerator object model for the description of the machine (SMF,
for Standard Machine Format), a collection of Physics Libraries, and a Perl interface that provides a homo-
geneous shell for integrating and managing these components. Currently available physics libraries include
TEAPOT++, a collection of C++ physics modules conceptually derived from TEAPOT [2], and DA/ZLIB
[3], a differential algebra package for map generation.
 This software environment has been used to build a flat model of RHIC which retains the hierarchical lat-
tice description while assigning specific characteristics to individual elements, such as measured field har-
monics. A first application of the model and of the simulation capabilities of UAL has been the study of
RHIC stability in the presence of siberian snakes and spin rotators. The building blocks of RHIC snakes and
rotators are helical dipoles, unconventional devices that can not be modeled by traditional accelerator phys-
ics codes and have been implemented in UAL as Taylor maps.
 Section 2 in the following note gives an overview of the motivation and main characteristics of UAL, Sec-
tion 3 describes the RHIC data stores, Section 4 the RHIC SMF format and Section 5 the RHIC specific
Perl interface (RHIC Shell). Section 6 explains how the RHIC SMF and UAL have been used to study the
RHIC dynamic behavior and presents detuning and dynamic aperture results.
An example of a complete set of Perl Scripts for RHIC simulation can be found in the Appendix.

2. Overview of the UAL Software Environment
 The performance of an accelerator depends to a large extent on the quality of the theoretical algorithms
built into its control system. Evolution of new computing technologies and accumulating accelerator experi-
ence supplies the necessary conditions for the next phases of integration---simulation facilities and (later)
artificial-intelligence based control systems. However, several intermediate steps must be taken first, the
foremost being the design and implementation of a framework for distributed accelerator programs.
 There is a complementarity between the inherent heterogeneity of accelerator problems and personalities
and the homogeneity that is essential for sharing codes. The Unified Accelerator Libraries (UAL) aim to
create an environment in which diverse accelerator algorithms can be used together, connected to arbitrary
data sources and integrated with other computer software. Each accelerator program is considered as a sep-
arate self-contained class that may have its own internal organization and methods. Connection with the
UAL is by common data objects (element attributes, beam parameters, etc.) On the one hand, this provides
flexibility for each physicist to develop his or her own ideas and algorithms. On the other hand, one can con-
sider the UAL to be a tool for comparing different approaches and selecting the most effective ones.
 The promise (some might say triumph) of object-oriented technology is to enable the replacement of pro-
prietary input formats by one of the object-oriented programming languages. This can exploit the similarity
of object-oriented methodologies to mathematical (algebraic) abstractions to make the application program-

