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Coherent beam-beam modes:

v Vlasov perturbation theory, discreet & continuum modes

v Transition from weak-strong to strong-strong regime

v Numerical simulations
v Experimental observations
v Methods of suppression of discreet modes

v Multi-bunch modes & long-range collisions

A bit of history:

1979, Piwinsky: v "= 2& (rigid uniform bunches)

1981, Meller & Siemann: v<"" = 1.34 (Vlasov eq., slab geometry)

1988, Hirata: v*"" = & (rigid Gaussian bunches)

1989, Yokoya et al.: veh=(121 +1.33)& (Vlasov eq., general aspect ratio)
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Viasov perturbation theory

Gaussian equilibrium distribution
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result of the “synchro-beam transformation” to nominal IP (Hirata, Moshammer, Ruggiero, 1992)
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Eigenvalue problem
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Equal intensities and tunes: 2~ and m-modes (Yokoya et al., 1989)
o Loy po
2

A =0 Fare

alone has continuous spectrum, A<(0,1): well-behaved integral operator, by itself
OWJ)o(J=Jy)=10(J-J;y), OJy)=4 has discrete spectrum

discrete 2-mode (rigid-body):

—(J +J +J.)/2
1=0, W, =T St

discrete m-modes:

round beams: A=1.214
flat beams (hor.):  A=1.330, 1.026, 1.002 | | | | L
flat beams (ver.): A =1.239 ' ' ' A

+ continuum (0, 1) in all cases Discrete modes of horizontal oscillations
in flat beams
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Spectrum of oscillations excited by a dipole kick:

Spectral coefficients: () = (¥, ¥"), k=12

Spectral density of center-of-mass oscillations in beam k after a kick at beam j:

Stieltjes integrating function:
k—j)/2 dw(/ﬂt) WA+0)—-wA-0)=1, LeP,
54 (A) = ( -/ e (Ve (A)y— (4+0) _( )
dal dw(A)/di=1, Ae€C,
dw(A)/dA =0, A¢C,P.
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Spectral density of horizontal X (left) and 7 (right) oscillations
in flat beams
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Transition from weak-strong to strong-strong regime

In round beams the discrete -mode emerges from the

continuum at intensity ratio r:=0.6
(analytics, YA, 1996)

Simulation by the Hybrid Fast Multipole Method (Herr,
Jones & Zorzano, 2001) confirms this result

I"ét: 0.65-
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Experimental observations

TRISTAN: precise measurements of A (K.Yokoya et al., 1989)
LEP:
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Spectra of horizontal oscillations in LEP of two bunches colliding at two IPs:
left — electron beam, right — positron beam (courtesy of G.Morpurgo)
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: Measured
— Beam-beam OFF 2~ tunesplit:

— Beam-beam ON
. | 0.004
Simulation Expectation:

1.214£=0.0036
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Spectra of two colliding p-bunches in RHIC (courtesy of W.Fischer)
Simulations by M.Vogt et al. (2002)
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Methods of suppression of discreet modes
v Splitting bare lattice tunes (A. Hoffman)
v Redistribution of phase advances between IPs (A. Temnykh, J.Welch)
v Different parity of integer parts of the tunes in separate rings (W.Herr)

Effect of tunesplit

(2) a _
Vo — Vo =2A

in flat beams
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Redistribution of phase advances between IPs
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completely surpressed, the same effect
would have integer tunesplit

Y.Alexahin Beam-Beam Workshop 2003, Montauk, Long-Island, NY




Long-range interactions

¥, x (1+J)

3t
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Two eigenfunctions from the left plot at
NLR= 12,’ /11 = 0.613, /12= -0.928.

e
1

0.5 1

m-mode with Ny =0, 4, 8, 12 3 head-on and 1 halo (d = 40,) collisions

lumped long-range interactions at in LHC (soft-Gaussian model, W.Herr,
separation d = 50, M.-P.Zorzano. 2001)

Y.Alexahin Beam-Beam Workshop 2003, Montauk, Long-Island, NY




Multi-bunch modes in Tevatron (3 x 3colliding head-on at 2 IPs)

Spectra of the normal modes as seen
in the weak (left) and strong (right)
flat  beams with r:=0.3 and
v/E=0.05, oy/B. =1, y=0.

n = 0 — fundamental modes
n = 1,2 — intermediate modes

Spectra of oscillations in the bunches
of the weak (left) and strong (right)
beams after a dipole kick at the first
bunch of the strong beam.
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Multi-bunch modes in Tevatron 36 x 36 bunches
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Spectral lines of rigid bunch oscillations (red)
and average values of incoherent tunes in
proton bunches (green) and pbar bunches
(blue) with intensity ratio r:= 0.5

Y.Alexahin

Each bunch collides at 2 head-on
and 70 LR IPs:

EPPM) = 250.01+.005 = 0.025

With equal tunes the utmost
coherent line lies within the
incoherent pbar tunespread.

With pbars tunes shifted down by
0.01 the utmost line shifts only by
~0.006 and gets out of the pbar
tunespread.
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Coherent beam-beam resonances
m-v +m' v =n ; 1T ati
m-v m-v - coupling of coherent oscillations
dipole + dipole (im =m' = 1): at v=mn/2
dipole + quadrupole (m = 1, m' =2): at v=n/3 - due to LR or offsets
and so on

Spontaneous excitation of m-mode
observed in LEP (courtesy of
K.Cornelis)
Explained (YA, 1999) by coupling
of dipole m-mode

v=1p+ 1.33&

| | to quadrupole 2-mode
0.26 . . 2va2y+E

Sigma mode

Vo zg—”;%g ~.265 at & =0.088
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Specific case of different working points

To suppress discrete modes in LHC combinations of tunes considered

Vi1 = 0.232, o= 0.310, v4,3=0.385

The following resonances can be encountered

3V, + v =1.006; 2vo + vz =1.005; vq +2vs =1.002
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Tracking simulation (soft-Gaussian model) of the dipole-quadrupole resonance at an
offset of 0.30, (M.-P. Zorzano, 2000). Growth of dipole oscillations saturates (Landau
damped?) at the expense of emittance growth. Such behavior was predicted analytically
by S.Heifets (1999).
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In absence of offset 6" order resonance (octupole-quadrupole) shows up!
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Effect of finite bunch length on coherent modes

Sources of synchro-betatron coupling:

¢ betatron phase variation along interaction region (“finite length effect”)

¢ chromaticity

. . W%t 2V
¢ finite crossing angle A

¢ dispersion at IP
- all reduce coherence of oscillations

(angle 2a—>1l4o /o, A=133->1121)

- introduce coupling to synchrotron s__ 4.
sidebands of incoherent tunes — may
provide Landau damping.

For short bunches “finite length” and
chromaticity combine in parameter

k=W.lay,R-1/ ") o’

- possibility of cancellation!
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| ; Landau damping in long bunches

v/ &= 0.05

<—  ¢ffect of the synchrotron tune

effect of chromaticity
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Spectral density of 2 (left) and 7 (right) Spectral density of 2 and & modes at
modes in long bunches (o,= B.”) at y = 0. wé.=0.15, o,/B. = 1.
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Predictions for Tevatron Run II Upgrade

chromaticity:
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moderate tunesplit
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restores Landau damping

flat beams, o,/ =50/35, v,/E=0.035, £=0.02 (two IPs), rs=10.5
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Interplay between impedance driven instabilities and beam-beam

effect

v Aggravation of TMCI by LR interactions (LEP)
v Landau damping by the beam-beam tunespread

v Blow-up of the weak beam by coherent oscillations of the strong one
(Tevatron)

TMCI in LEP 8x 8 operation

- coupling of V. m-mode and
Vi -Vs synchro-betatron mode

- threshold ~30% lower for 8 x 8
than for 4x 4 bunches

- tentative explanation: twice larger

tuneshift of the coherent -mode
(YA, 1996)

- another possibility: larger impedance on pretzel orbits
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Landau damping by the beam-beam tunespread

Large gap between m-mode and continuum may switch off Landau damping in
the strong-strong regime (J.Gareyte, 1989)

What is really the case in the weak-strong regime?

Dispersion relation for arbitrary intensity ratio rg (YA, unpublished):

2

(-ap[© dv_”(/f) -, szw(;‘)) = ooy ([ A9,

A — U

@y, — coherent tuneshifts (in units of &)

the strong beam would see alone =0 for uncoupled beams,

A=, -V )/ E, e.g. due to large tunesplit
[lel () +c (D) =2,
[ e (De, (Rydw(2) =0
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Special case of equal bare lattice tunes and impedances:

()= 1+ 7 - rigid 2~-mode

(1) =———c. (1), A0

\ e
Ve

j A (A)dw(A) =——

P 1+ 2

(1-20 | c§<§>dw(m)(1_1+r§ o, _(-r) o’ LT

0 — U l+7 A l+r. A4 0 A—u

For rg= 1 equations for 7~ and 2-modes decouple

For rg<<1 the rigid 2-mode A ~ @ is undamped, something else is needed for
stability (tunesplit, overlapping sidebands, etc.)
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Landau damping in the case of weak coupling ( due to tunesplit)

Flat beams: Round beams:
sy =y =2l 2y
[vi(,)]

Tevatron flattop tunespreads

horizontal tunespread is not
sufficient
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