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Theoretical Model and Assumptions

e Consider high-intensity ion beam with distribu-
tion function fi(x,p,t), characteristic radius ry,
and axial momentum ~ympByc, propagating in z-
direction through background population of elec-
trons with distribution function f.(x,p,t).

e Jons have high directed axial velocity V, = Bc,
whereas electrons are nonrelativistic and station-
ary in the laboratory frame with [ d3pp, fe(x,p,t) ~
0.

e Ion beam is treated as continuous in the z-direction,

and applied transverse focusing force if modeled
by

b 2
F oc — —vbmbwﬁbxj_

in the smooth-beam approximation, where x| =

re; + yé, is transverse displacement from beam
axis.
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e For ion-rich beam, the space-charge force on an
electron, F = eV ¢, provides transverse confine-
ment of the electrons by the electrostatic poten-

tial ¢(x,1t).

e Ion motion in the beam frame is assumed to be
nonrelativistic, with

2|, [Pyl |6p2] K vemufoc

where ép, = p, — vmpfPec, and yympByc is the di-
rected axial momentum.

o Allow arbitrary space-charge intensity consistent
with radial confinement of the ions and
_ Z2e’N,

vp = < M

m b62

where N, = [dzdyn, is the number of ions per
unit axial length.
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e Analysis is carried out in the electrostatic approx-
imation where the self-generated electric field is

ES(Xa t) - _V¢(X7 t)
e The electrostatic potential ¢(zx,y,z,t) is deter-
mined self-consistently from Poisson’s equation

V2¢ = ~4mwe(Zyny — ne)

where ny(x,t) = [ d3pfip(x,p,t) and n, = [ d3pfe(x,p,t)
are the ion and electron number densities.

e Assume that the ion axial velocity profile V,,(x,t) ~

Bue is approximately uniform over the beam cross
section. The self-generated magnetic field

B°(x,t) = VA,(x,t) X &,
is determined from
V?A, = —47 ZyefByny

where the electrons are assumed to carry zero
axial current in the laboratory frame.
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e Under equilibrium conditions (8/9t = 0), treat the
ion and electron properties as spatially uniform in
the z-direction (8/9z = 0).

e In the stability analysis, assume small-amplitude
perturbations with z— and t—variations of the
form

exp(ik,z — 1wt)

where Imw > 0 corresponds to instability (tempo-
ral growth), and k, = 2#«n/L is the axial wavenum-
ber, where n is an integer, and L is the axial pe-
riodicity length of the perturbation.

e Stability analysis assumes perturbations with suf-
ficiently high frequency w and long axial wave-
length 27/k, that

kfrg K1

w
— — Bc

Kl > UTbz

w
k2

where VTpz — (2sz/'ybmb)1/2 and Ve, — (2Tez/me)1/2
are the characteristic axial thermal speeds.

> VUTez
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The assumption of high-frequency perturbations with
long axial wavelength leads to several simplifications
in the analysis of the Viasov-Maxwell equations.

e The three-dimensional Laplacian V2 is approxi-
mated by
92 52
V? ~ V2 =
1=327 Sy

e T he perturbed axial forces on the electrons and
ions, e.g.,

OF. = e—8—5¢éz and 0F, = —Zbe—a—5¢éz
0z 0z

are treated as small in comparison with the trans-
verse forces (i.e., neglect the effects of resonant
Landau damping in axial velocity space v,).

e T herefore, we describe the evolution of system in
terms of the reduced distribution functions

Fb(X, P, t) - / dpsz(xa P, t)

Fu(x,po,t) = / dp. fo(x, Py 1)



Nonlinear Vilasov-Maxwell Equations
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In the context of these assumptions, the electron

distribution F.(x,p,t) evolves nonlinearly accord-
ing to

0 Pl 0 0 }
il —4eVid — Fe(x,p1,t) =0
{81& -+ oply v +eV ¢ op. X Fe(X,p1,t)

where —e is the electron charge, and V = €,0/9z+
e,0/0y is the perpendicular gradient.

For the ions, v-9/0x ~ (p./vme)-0/9x1 + V;,0/ 0z,
and the nonlinear Viasov equation for Fy(x,py,t)
becomes

o o PL o
il Vi :
{ﬁt + *92 N oy OX |
5 o)
—  (wmewpXL + ZeeV 1) - 301 F(x,p1,t) =0
1

Here, 4+Zye is the ion charge, and (x,t) is the
combined potential defined by

"/)<X’ t) = d)(xa t) - ﬂbAz(Xa t)



Nonlinear Viasov-Maxwell Equations
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The electrostatic potential ¢(x,t) and combined
potential ¥(x,t) = #(x,t) — BpA.(x,t) are deter-
mined self-consistently from

92 2 5 o
503 + 992 1) —4me Zb/d pFy — /d pFe>

82 92 Z
= —4ne| = | &?pF, — | d°pF.
<6’x2 + 8y2> v " (75 / b / pF>

In Maxwell’'s equations for ¢(x,t) and ¥(x,t)

np(x, 1) = / 2pFy(%, p Ly t)

’I’Le(X,t) — /dzpFe<Xv p.L’t)

are the ion and electron particle densities, respec-
tively.

The thin-beam approximation and k2r7 < 1 have
been used to approximate V2 ~ V2 = §2/9z2 +
82 /9y2.



Nonlinear Vilasov-Maxwell Equations
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e Assume that a perfectly conducting cylindrical
wall is located at radius » = r,,, where r = (z? +
y2)/2 Impose the requirement that

[Eg]"':rw - [Eﬁ]r=7‘w — [Bi]T‘:'rw =0

e In terms of the potentials ¢(x,t) and ¥ (x,t), this
gives

¢(’r‘ == Tw79’ Z,t) == O
P(r = 1y,0,2,t) =0

where the constant values of the potentials at
r = r, have been taken equal to zero without
loss of generality.

10



Equilibrium Vliasov-Maxwell Equations
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e Under quasisteady conditions, examine solutions
to nonlinear Vlasov-Maxwell equations with
0 o 0

e Viasov-Maxwell equations support broad range of
equilibrium solutions for the beam ions and back-
ground electrons of the general form

FY = F)(Hy)

Feo FeO<H_Le)

e Here, H;;, and H;, are the single-particle Hamil-
tonians defined by

1 1 -
Hi, = P+ Smwmewgr® + Zye[$2(r) — ¥°]
2vpmy 2
1 -
Hie = —pi—el¢°(r) = ¢°]
Me

where r = (22 + y2)1/2, and the constants ¢° =

#°(r = 0) and 4% = % = 0) are the on-axis
values of the potentials.

11



Equilibrium Vliasov-Maxwell Equations
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e For specified distribution functions FbO(Hlb) and
FO9(H,.), the equilibrium potentials ¢°(r) and ¥°(r)
are determined self-consistently from

190 0O

———r——qﬁo('r) = —-471'6[25%8(7') — ng('f')]
rOr Or

1 8 8 0 Zb 0 0
I = -4 -— —
rarrarw (r) " {’anb(r) e

where nd(r) and n2(r) are the ion and electron
density profiles

ng (r)

/ 2pFO(H )

ng(r)

/ PpFO(H.,)

e Maxwell’'s equations for ¢°(r) and ¥°(r) are gen-
erally nonlinear.

12



Equilibrium with Step-Function Density Profiles
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e A simple class of equilibrium distribution func-
tions FP(H,p) and F2(H,.), which correspond to
overlapping step-function density profiles for the
beam ions and background electrons, is given by

T

Fo(Hyp) = __—_QWWbmbé(Hlb — 1)
0 e ~
Fe (H_Le) - . 5(H.Le - T_Le)

where 7y, 7., T1, and T, . are positive constants.

e Some straightforward algebraic manipulation shows
that the corresponding density profiles are

ny = const.,, 0<r <y
ny(r) =
0, ry <1< Ty

and

ne = fZyny = const., 0<r <y
ne(r) =
0, T, < T < Ty

where f = 7n./Zyng is the fractional charge neu-
tralization.

13
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Equilibrium with Step-Function Density Profiles
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e Introduce the ion plasma frequency-squared de-
fined by

o 4'/r7'inl?e2 -4NbZ§e2
Wy = : [
P Yo VompTs

where N, = nr? is the number of beam ions per
unit axial length.

e Equilibrium agalysis shows that the beam radius 7
is related to T\, T, Cugb, etc., by the equilibrium
constraint conditions

1 /1 2T
) - 2
2\ Yoy
1 yymy (1 B f)a}g 22— 2T .

2 Zyme pb b Me

e T he coefficients of 'rf in the above constraint con-

ditions will be recognized as the depressed beta-
tron frequencies

D2 and »?

€

for transverse particle motions, including self-field
effects.

14



Equilibrium with Step-Function Density Profiles
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e Examine equilibrium constraint conditions for Tip >
O and 79, > 0.

e Can show that both the ions and electrons are
radially confined provided

f<i1

~2
1wpb 1
552“(*2‘]‘) <1
66 \ V%

which place restrictions on the allowed values of
fractional charge neutralization f, and normalized
beam intensity @gb/wgb.

15
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Thermal Equilibrium with Diffuse Density
Profiles
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e Many choices of equilibrium distributions F,?(HU,)

and FO(H,.) are possible. As another example,
consider

ny Hip
FO(H,;) = exp | —=—=2
b (Hop) (2myermpT 1 p) p( T.Lb)
'ﬁe H_Le
FP(Hie) = ooy &P (" T, )

where ng, ne, 11, and T, are positive constants.

e T he corresponding equilibrium density profiles are

1 1 .
nd(r) fip €XP {_E <§"ybmbw§b7‘2 + Zpe[9O(r) — ¢0]> }

— 5 € 70
nd(r) = neexp{ﬂewo(r)—qﬁ]}

e The potentials ¥°(r) and ¢°(r) must be deter-
mined numerically from the corresponding Maxwell
equations, which are highly nonlinear.

16
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Linearized Vlasov-Maxwell Equations
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e EXxpress all quantities in the nonlinear Viasov-Maxwell
equations as an equilibrium value plus a pertur-
bation, e.g., Fyp(x,pL,t) = FP(Hy) 4+ §Fy(x,py,t),
P(x,t) = pO(r) 4+ 69(x,t), etc.

e For small-amplitude perturbations, the linearized
Vliasov equation for the ions becomes

o s, p. O
Y Vi -
{87: R = Yoy OX )
Zre O 0
_ ['mebwﬁb + —b————wo(r)] X - ———} SFp(X,p1,t)
r opL
e
= b pP. - V_L(S’QD(X, t) FbO(H_Lb)
YoTTp OH 1p

17



Linearized Viasov-Maxwell Equations
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e Similarly, the linearized Vlasov equation for the
electrons is given by

9  pL O ed 0
{8t Me 8xl+'r8'r¢ (rxs 8P_L}

X 5F€(Xa PL, t)

FeO(H_Le)

e 0
= — VAT , 1
BPL 16d(x )3Hie

m

e Linearized Viasov-Maxwell equations are valid for
small-amplitude perturbations about general choice
of equilibrium distribution functions FbO(Hlb) and

FeO(H_Le)-

17-1



Linearized Viasov-Maxwell Equations
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e The perturbed potentials §¢(x,t) and do(x,t) are
determined self-consistently in terms of the per-
turbed distribution functions from the Maxwell

equations
+ o —4rne | — [ d°péFy — [ d°péFe
T
(8302 + 3y2> ¢ = —4me (Zb/d pdFy — /d p5Fe>

dx?2 = Oy?
e In the linearized Vlasov equations for 6 Fp(x,p,t)

and §F.(x,p.,t), it is important to recognize that
the differential operator

{3
corresponds to the total time derivative follow-

ing the particle motion in the total equilibrium
(applied plus self-generated) field configuration.

. d
dt

18



Linearized Viasov-Maxwell Equations
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e For amplifying perturbations, we integrate the lin-
earized Vliasov equations from t' = —oo, where

the perturbations are negligibly small, up to the
present time t' = t, when the particle orbits x'(t")
and p',(t') pass through the phase-space point
(xap.L)r i.e.,

X{t'=t) = x

p (t'=1t) PL

e This gives for the perturbed distribution functions

8 t !
SFy(%, D1, 1) = Zyera—FO(H.y) / at' PL v 5o (!, 1)
OH 14 —oo V6T
0 0 ¥ /p,_]_ ' T,
5F€(X? P_L7t) = —¢€ Fe (H.Le) dt 'VL5¢(xat)
8H_Le — 00 me
where use has been made of dH',/dt = 0 =

dH'__/dt'.

19



Linearized Vlasov-Maxwell Equations
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e The ‘primed’ orbits for the beam ions solve 2/(t') =
z+ Viy(t' —t) and

d ) ! / !
— t) = t
dt,x_l_( ) ,mebpl( )
d Zpe 0O (r")
R (¢) = —wma, (1) = s X ()

“where r2(t') = «2(t')+y2(t"). Similarly, the ‘primed’
orbits for the background electrons solve 2/(t') =
z, and

d / ! - 1 ! !
E{,X_L(t ) = mepl(t )
d __ € 8¢O(Tl) 1oyl
@P_L(t ) = TR x; (1)

where x/ (¢ =¢) =x; and p', (' =t) = p..

20



