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.M—u—u‘_. Motivation

=> Study collective instabilities in high-intensity ion beams for applications to:

O Spallation neutron sources.

O Heavy ion fusion.
O Hadron colliders.

=> 3D multi-species nonlinear 6f particle simulation code provides an effective tool
for investigating the following processes:

Electron-ion two-stream instability.

Periodically-focused equilibrium solutions in alternating-gradient focusing fields.

Dynamics of rms beam radius and other statistically averaged quantities.

O 0 0O

Halo formation.
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PPPL Theoretical Model
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Thin, continuous, high-intensity ion beam (j = b) propagates in the z-direction
through background electron and ion components (5 = e, ) described by dis-
tribution function f;(x,p,t).

Transverse and axial particle velocities in a frame of reference moving with
axial velocity (;ce, are assumed to be nonrelativistic.

Adopt a smooth-focusing model in which the focusing force is described by

Self-electric and self-magnetic fields are expressed as E° = —V¢(x,t) and
B° =V x A,(xz,t)e,.

For perturbations with long axial wavelength (k2r? < 1), neglect the perturbed
axial force on the charge components.
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i‘—-—-—. Theoretical Model

> Distribution functions and electromagnetic fields are described self-consistently
by the nonlinear Vlasov-Maxwell equations in the six-dimensional phase space

(z,p):

IAﬁMU@QQ\&w%bAH p,t)
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i—-—-—-—. Nonlinear 6f Particle Simulation Method
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= Divide the distribution function into two parts: f; = f0 +4f; .
= fjo 1s @ known solution to the nonlinear Vlasov-Maxwell equations.

> Determine numerically the evolution of the perturbed distribution function

of; = fi — fio -

> Advance the weight function defined by w; =6 f;/f;, together with the parti-
cles’ positions and momenta.

> Equations of motion for the particles are given by

= Aﬁ.iﬁ.vlﬁi

—ymjwsx 5 — e; (Vo — BV 1 AL)

= Weight functions w; are carried by the simulation particles, and the dynamical
equations for w; are derived from the definition of w; and the Vlasov equation.



Nonlinear 6f Particle Simulation Method
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o  Weight functions evolve according to

dwj; _ B 1 df0 &Nu%.
- Ty .%A dt v
&u& . %&.s.
%A dt v ~dt
(¢,A2)—(8¢,6A)

Here, 0¢p = ¢ — ¢o, 04, = A, — A0, and (¢o, Ao, fjo ) are the equilibrium
solutions.

= The perturbed distribution function ¢ f; is given by the weighted Klimontovich
representation

2.
0fj = |2w. M w;id(T — x5;)0(p — Pj;)
57 =1

where NN; is the total number of actual j’th species particles, and Ng; is the
total number of stmulation particles for the j’th species.



i‘—-—u—. Nonlinear 4f Particle Simulation Method
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o Maxwell’s equations are also expressed in terms of the perturbed quantities:

V3¢ = —4n MU e;jon;
J

V2i6A, = lfﬂMUmu.Qu.%Sq
J

2 .

Nj —
on; \&wm&\wﬁav? t) = 2|h MU\E%.QASV x;;)
5 =1

where U(x, x;;) represents the method of distributing particles on the grids.
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i—-—-—-—. Advantages of the /f method
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Simulation noise is reduced significantly.

Statistical noise ~ 1/4/Ns.

To achieve the same accuracy, number of simulation particles required by the
6 f method is only (6f/f)? times of that required by the conventional PIC
method.

No waste of computing resource on something already known — fj.
Moreover, make use of the known (fy) to determine the unknown (6 f).
Study physics effects separately, as well as simultaneously.

Easily switched between linear and nonlinear operation.



i—--—-—. The BEST Code
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Implementation of the 3D multispecies nonlinear ¢f simulation method de-
scribed above is embodied in the Beam Equilibrium Stability and Transport
(BEST) code at the Princeton Plasma Physics Laboratory.

= Advances the particle motions using a 4th-order Runge-Kutte method.

> Solves Maxwell’s equations by a fast Fourier transform and finite-difference
method in cylindrical geometry.

o> Written in Fortran 90/95, the code utilizes extensively the object-oriented
features provided by the computer language.

> The NetCDF scientific data format is implemented for large-scale diagnostics
and visualization.

> The code has achieved an average speed of 40us/(particlexstep) on a DEC
alpha personal workstation 500au computer.
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pppl Nonlinear Properties of Thermal Equilibrium Beams
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Single-species thermal equilibrium ion beam in a constant focusing field.

Equilibrium properties depend on the radial coordinate r = y/(z2 + y2).
Cylindrical chamber with perfectly conducting wall located at r = r,.

Thermal equilibrium distribution function for the beam ion is given by

| Tip P4 /2y + Q@S@EW% 212 + ep(do — BrAzo)
fro(r,p1) = mxll v

wﬂq\iﬁ@mﬂ@ MJ@

System parameters are chosen to be: -, = 1.85, and normalized beam in-
tensity K Bperg/eo = 0.025, where K = 2Nye? [ypmpBic? is the self-field per-
veance, and NV, is the number of beam ions per unit axial length. Normalized
perpendicular beam temperature 1y \Q@SZ\% = 2.25 x 1079.
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i—-—-‘—. Nonlinear Properties of Thermal Equilibrium Beams
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o Simulation results show that the perturbations do not grow and the beam
propagates quiescently, which agrees with the nonlinear stability theorem for
the choice of thermal equilibrium distribution function.
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i—u—-_-—. Surface Modes
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> These modes can be destabilized by the electron-ion two-stream interaction
when background electrons are present.

> The BEST code, operating in its linear stability mode, has recovered well-
defined eigenmodes which agree with theoretical predications.
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(a) Density Perturbation. (b) Potential Perturbation.
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= For azimuthal mode number [ = 1, the dispersion relation is given by

~ 2
w =k, V& 2 - (1)

V2% rZ,

where 73, 15 the radius of the beam edge, and r,, is location of the conducting

wall. Here, @W@ = Rr%gmw /~vymyp is the ion plasma frequency-squared, and

Wpb/ V27, = wgp in the space-charge-dominated limit with K Bycr3/€g > 1.
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(a) w/wgy versus ry,/Tp (b) Spectrum for ry, /ry = 2.2
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i—-—-—-—. Electron-Proton Two-Stream Instability

= When a background electron component is introduced with 8. = V. /c = 0,
the [ = 1 “surface mode” can be destabilized for a certain range of axial

wavenumber and a certain range of electron temperature 7.

0 eZ,/yymy, (107
0 eZ,/yymy, (107

Amv t=20 AUV t = HOO\EE.



i‘—u‘—. Instability Growth Rate

= The k,V,/wgp and T /T, dependences of the growth rate are qualitatively con-
sistent with the analytical results obtained for uniform-density beams.

0.047 = 7 7 7T 0,04
20027 - S 0.02¢ .
N >~
0.00 oool_/ |
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0.4
WN/\U\Smc

_H‘m\\g.__u
(a) v versus k., V3 /wgap

(b) v versus T /Ty

= System parameters: % /yjwg, = 0.1, Ty/ymmpVy = 2.25 x 107°, and f =
Te [Tip = 0.1.
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i—-‘—-—. Instability Growth Rate
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=  k,Vp/wp, dependence:

O

Only for a certain range of k,V;,/wg, can the collective mode of the beam ions
effectively resonate with the electrons and produce instability.

= T./T, dependence:

O
O
O

For instability, electrons must physically overlap the region of the eigenmode.
Electrons are radially confined by the potential of the beam ions.

Electron temperature determines the radial extent of the electron density
profile.



i—.—-—-—. Cold Electrons with T./T, = 0.014

> Electrons are relatively cold and localized in the beam center, and no instability

developed over SOEM% :
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Warm Electrons with T,/T, = 0.183

> Electrons are sufficiently hot that the electron density profile overlaps that of
the beam ions, and the onset of a strong e-p instability is observed.
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i‘—u—.—. Work in Progress

© The nonlinear phase of the electron-ion two-stream instability for high-intensity
beam propagation is being simulated.

> The BEST code is readily adapted to the case of periodic focusing quadrapole
field or solenoidal field, and can be used to find peroidically-focused solutions.

>  The BEST code is being parallelized to run on tera-scale parallel computers.
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i—-—-—u—. Conclusions
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> A 3D multispecies nonlinear perturbative particle simulation method has been
developed to study collective instabilities in intense charged particle beams
described self-consistently by the Vlasov-Maxwell equations.

> Simulation results show that a thermal equilibrium ion beam in a constant
focusing field is nonlinearly stable and can propagate quiescently over hundreds
of lattice periods.

o For surface eigenmodes excited in a uniform-density beam, the simulation re-
sults agree well with the analytical results.

> Introducing a background component of electrons, the electron-proton (e-p)
two-stream instability is observed in the simulations. Several properties of
this instability are investigated numerically , and are found to be in qualitative
agreement with theoretical predictions.
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PPPL Conclusions

The BEST code, a 3D multispecies perturbative particle simulation code, has
been tested and applied in different scenarios.

Simulation particles are used to follow only the perturbed distribution function
and self-fields. Therefore, the simulation noise is reduced significantly.

Perturbative approach also enables the code to investigate different physics
effects separately, as well as simultaneously.

The BEST code can be easily switched between linear and nonlinear opera-
tion, and used to study both linear stability properties and nonlinear beam
dynamics.

These features provide us with an effective tool to investigate the electron-ion

- two-stream instability, periodically focused solutions in alternating-gradient fo-

cusing fields, halo formation, and many other important problems in nonlinear
beam dynamics and accelerator physics.
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